
ХАКАТОН

Binary Brains
2026

Кейсы

Старт: 16 января 2026, 10:00 (МСК)
Дедлайн: 25 января 2026, 23:59 (МСК)

Максимум баллов за кейс: 129 (80 базовых + 49 бонусных)

Содержание

Обзор кейсов . ⁠3
Подход к данным . ⁠3

Кейс 1: Low-code UI Designer . ⁠4
Суть задачи . ⁠4
Обязательные требования . ⁠4
Дополнительные требования (бонусы) . ⁠6
Критерии оценки . ⁠6
Что НЕ требуется . ⁠7
Пример сценария . ⁠7

Кейс 2: WorkGow Designer . ⁠8
Суть задачи . ⁠8
Термины . ⁠8
Обязательные требования . ⁠8
Дополнительные требования (бонусы) . ⁠10
Критерии оценки . ⁠10

Кейс 3: Data Model Designer . ⁠11
Суть задачи . ⁠11
Термины . ⁠11
Обязательные требования . ⁠11
Дополнительные требования (бонусы) . ⁠13
Критерии оценки . ⁠13

Кейс 4: Dashboard Builder . ⁠15
Суть задачи . ⁠15
Обязательные требования . ⁠15
Дополнительные требования (бонусы) . ⁠17
Критерии оценки . ⁠17
Mock-данные . ⁠17

Общие требования . ⁠19
Технологии . ⁠19
Формат сдачи . ⁠19
Оценка . ⁠19

FAQ . ⁠20

Binary Brains Hackathon 2026 Кейсы

Обзор кейсов

1
UI Designer

Конструктор интерфейсов + рендерер
2

Work'ow Designer

Редактор процессов + state machine

3
Data Model Designer

Редактор моделей данных + binding
engine

4
Dashboard Builder

Конструктор дашбордов + query
builder

Максимум баллов: 129 за каждый кейс (80 базовых + 49 бонусных)

Подход к данным

Важно: Во всех кейсах не используются SQL-базы данных. Вместо этого:

• Схема — JSON-описание структуры (сущности, поля, типы, связи)
• Данные — массивы JSON-объектов, соответствующие схеме

// Схема (metadata)
{ "entity": "Order", "fields": [
 { "name": "id", "type": "number" },
 { "name": "customer_id", "type": "reference", "target": "Customer" }
]}

// Данные (records)
[
 { "id": 1, "customer_id": 101 },
 { "id": 2, "customer_id": 102 }
]

Такой подход позволяет:
• Работать полностью в браузере без серверной БД
• Легко экспортировать/импортировать через JSON-файлы
• Фокусироваться на логике, а не на инфраструктуре

Примеры JSON-схем в кейсах — иллюстративные. Ожидаем от участников собственные проду
манные структуры.

3

Binary Brains Hackathon 2026 Кейсы

Кейс 1: Low-code UI Designer

Суть задачи

Разработайте визуальный конструктор интерфейсов для Low-code платформы.
Решение состоит из двух модулей:

• Designer — редактор для сборки интерфейса из компонентов (drag & drop)
• Interpreter — движок отображения и обработки действий пользователя

Целевой пользователь: бизнес-аналитик, который хочет быстро собрать форму или панель
управления без написания кода.

Обязательные требования

Designer (Конструктор)

Рабочая область (Canvas)
• Зона для размещения компонентов
• Сетка для выравнивания элементов
• Выделение компонента при клике

Палитра компонентов

Компонент Описание Свойства

Header Заголовок text, level (h1/h2/h3)
Button Кнопка text, variant, disabled
Form Input Поле ввода label, placeholder, required, type
Checkbox Флажок label, checked
Table Таблица данных columns, rows
Group Контейнер direction, padding

Drag & Drop
• Перетаскивание компонентов из палитры на canvas
• Перемещение уже размещённых компонентов
• Изменение размеров компонентов

Вложенность
• Group может содержать другие компоненты, включая вложенные Group
• Минимальная глубина — 3 уровня
• Визуальная индикация при перетаскивании в Group

4

Binary Brains Hackathon 2026 Кейсы

Панель свойств
• Редактируемые свойства выбранного компонента
• Изменения применяются сразу

Сохранение и загрузка
• Экспорт интерфейса в JSON-файл
• Импорт из JSON-файла

Interpreter (Движок отображения)

Рендеринг
• Загрузка JSON-схемы
• Динамическая сборка интерфейса
• Корректное отображение вложенности и стилей

Интерактивность
• Form Input позволяет вводить текст
• Checkbox переключается
• Table отображает данные
• Button реагирует на клик

Обработка событий
• При клике на Button — вывод alert или сбор данных формы
• Данные собираются в объект { "id-поля": "значение", ... }
• Результат выводится в консоль или alert

Режим предпросмотра
• Кнопка «Предпросмотр» открывает Interpreter с текущей схемой
• Возможность вернуться к редактированию

JSON-схема

Схема должна включать: типы компонентов, ID, стили и свойства, иерархию вложенности.

{
 "version": "1.0",
 "name": "Форма обратной связи",
 "components": [
 {
 "id": "header-1",
 "type": "Header",
 "props": { "text": "Свяжитесь с нами", "level": "h1" },
 "styles": { "color": "#333", "marginBottom": 20 },
 "position": { "x": 0, "y": 0, "width": 400, "height": 48 }
 },
 {
 "id": "form-group",
 "type": "Group",
 "props": { "direction": "vertical", "padding": 20 },
 "children": [
 {
 "id": "name-input",
 "type": "FormInput",
 "props": { "label": "Ваше имя", "required": true, "type": "text" }

5

Binary Brains Hackathon 2026 Кейсы

 }
]
 }
]
}

Примечание: приведённая схема — лишь пример. Мы ждём от участников собственные улуч
шенные варианты структуры JSON.

Дополнительные требования (бонусы)

Требование Описание Баллы

Entity Binding Интерпретатор принимает схему entity + record и заполняет форму
для редактирования до 12

Bindings Поддержка выражений {{ }} в свойствах до 10
Undo/Redo Отмена/повтор действий, минимум 10 шагов до 7
Копирование Ctrl+C/V для дублирования компонентов до 5
Валидация форм Подсветка required-полей при отправке до 5
Доп. компоненты Select, Text Area, Image и др. до 10

Entity Binding: Интерпретатор получает на вход: схему формы, схему сущности (entity) и
запись (record). Поля формы автоматически заполняются данными из record. При сохранении
— возвращается обновлённый record.

Критерии оценки

Критерий Баллы Что оценивается

Работа с компонентами 12 6 компонентов, редактирование свойств
Drag & Drop 10 Перетаскивание, перемещение, ресайз
Вложенность 8 Group принимает элементы на 3+ уровня
Рендеринг 10 Интерфейс собирается из JSON
Интерактивность 10 Компоненты реагируют на действия
Сбор данных 5 Данные формы выводятся в консоль
Полнота схемы 5 Типы, ID, стили, иерархия
Документация 5 Формат описан в README
Внешний вид 7 Современный дизайн
Удобство 5 Интуитивно понятно
Стабильность 3 Нет критических багов

6

Binary Brains Hackathon 2026 Кейсы

Максимум: 80 базовых + 49 бонусных = 129

Что НЕ требуется

— База данных — всё работает в браузере
— Авторизация пользователей
— Сохранение на сервер — достаточно экспорта/импорта файлов

Пример сценария

1. Открываю Designer, вижу пустой canvas и палитру компонентов
2. Перетаскиваю Header, ввожу текст «Заявка на отпуск»
3. Перетаскиваю Group, внутрь добавляю Form Input, Checkbox, Button
4. В панели свойств ставлю required для нужных полей
5. Нажимаю «Предпросмотр» — вижу готовую форму
6. Заполняю поля, нажимаю «Отправить» — в консоли JSON с данными
7. Возвращаюсь в Designer, экспортирую JSON-файл

7

Binary Brains Hackathon 2026 Кейсы

Кейс 2: Work'ow Designer

Суть задачи

Разработайте визуальный редактор для проектирования логики на основе конечных автоматов
(State Machines).
Решение состоит из двух модулей:

• Work'ow Designer — визуальный редактор диаграмм состояний
• State Machine Core — движок исполнения переходов

Термины

Термин Значение Пример

State Состояние сущности «Черновик», «Завершено»
Transition Переход между состояниями Черновик → На согласовании
Trigger Событие перехода submit, approve
Condition Условие перехода amount > 1000

Initial State Начальное состояние Всегда одно
Final State Конечное состояние Может быть несколько

Обязательные требования

Work'ow Designer

Рабочая область
• Графический интерфейс для создания диаграмм
• Перемещение по холсту (pan)
• Масштабирование (zoom)

Узлы (States)

Тип Вид Описание

Start Зелёный кружок Начальное состояние, одно на диаграмму
State Прямоугольник Обычное состояние
End Красный кружок Конечное состояние

Связи (Transitions)
• Направленные связи между узлами
• Линии со стрелками
• Подпись триггера на линии

8

Binary Brains Hackathon 2026 Кейсы

Панель настройки переходов
• Trigger — событие перехода
• Condition — условие перехода

Экспорт/Импорт
• Сохранение схемы в JSON
• Загрузка из JSON

State Machine Core

Входные данные
• Текущее состояние
• Входное событие
• JSON-схема процесса
• Контекст для проверки условий

Валидация перехода
Возвращает:

• { valid: true, targetState: "..." } — переход возможен
• { valid: false, reason: "..." } — переход невозможен

Выполнение перехода
• Смена состояния на целевое
• Запись перехода в лог

Логирование
История: timestamp, from, to, event, контекст.
Демонстрационный интерфейс

• Подсветка текущего состояния
• Кнопки для отправки триггеров
• Поле для ввода контекста
• История переходов

JSON-схема

{
 "id": "order-approval",
 "name": "Согласование заказа",
 "initial": "draft",
 "states": {
 "draft": {
 "name": "Черновик",
 "transitions": [{ "target": "pending", "trigger": "submit" }]
 },
 "pending": {
 "name": "На рассмотрении",
 "transitions": [
 { "target": "approved", "trigger": "approve", "condition": "amount <= 10000" },
 { "target": "rejected", "trigger": "reject" }
]
 },

9

Binary Brains Hackathon 2026 Кейсы

 "approved": { "name": "Согласовано", "type": "final" },
 "rejected": { "name": "Отклонено", "type": "final" }
 }
}

Примечание: приведённая схема — лишь пример. Мы ждём от участников собственные улуч
шенные варианты структуры JSON.

Дополнительные требования (бонусы)

Требование Описание Баллы

Параллельные состояния Fork/Join — разделение и слияние потоков выполнения до 12
Валидация диаграммы Проверка: есть Start/End, все состояния достижимы до 8
Actions Действия при переходе: log, alert, setContext до 7
Авто-выравнивание Кнопка автоматического расположения узлов до 5
Таймеры Автоматический переход по истечении времени до 7
Вложенные состояния State с внутренней state machine до 10

Критерии оценки

Критерий Баллы Что оценивается

Работа с узлами 10 Создание, перемещение, удаление
Работа с переходами 12 Связи, trigger, condition
Экспорт/Импорт 8 JSON сохраняется и загружается
Валидация перехода 10 Проверка возможности A → B
Выполнение перехода 8 Смена состояния, проверка условий
Логирование 4 История переходов
Демо-интерфейс 3 Тестирование процесса
Полнота схемы 5 Граф процесса
Документация 5 Формат в README
Внешний вид 7 Читаемость диаграммы
Удобство 5 Интуитивное редактирование
Стабильность 3 Нет багов

Максимум: 80 базовых + 49 бонусных = 129

10

Binary Brains Hackathon 2026 Кейсы

Кейс 3: Data Model Designer

Суть задачи

Разработайте визуальный редактор моделей данных и движок связывания данных с UI.
Решение состоит из двух модулей:

• Entity Designer — редактор сущностей и связей
• Binding Engine — связывание данных через выражения {{ }}

Термины

Термин Значение Пример

Entity Сущность предметной области Заказ, Клиент
Field Поле с типом данных name: String

Relation Связь между сущностями Заказ → Клиент
Constraint Ограничение на поле required, unique
Binding Связывание данных с UI {{ order.total }}

Обязательные требования

Entity Designer

Рабочая область
• Диаграмма сущностей (карточки с полями)
• Перемещение карточек (drag)
• Масштабирование (zoom)

Типы полей

Тип Описание Пример

String Строка "Иван"

Number Число 1500.50

Boolean Логическое true

Date Дата "2026-01-20"

Enum Перечисление ["active", "inactive"]

Reference Ссылка на сущность → Customer

Ограничения
• required — обязательное поле

11

Binary Brains Hackathon 2026 Кейсы

• unique — уникальное значение
Связи (Relations)

• One-to-One (1:1)
• One-to-Many (1:N)
• Many-to-Many (N:M)

Экспорт/Импорт
• Сохранение схемы сущностей в JSON-файл
• Загрузка схемы из JSON-файла

JSON-схема сущностей

{
 "version": "1.0",
 "entities": [
 {
 "id": "customer",
 "name": "Клиент",
 "fields": [
 { "name": "id", "type": "Number", "constraints": ["required", "unique"] },
 { "name": "name", "type": "String", "constraints": ["required"] },
 { "name": "email", "type": "String", "constraints": ["unique"] },
 { "name": "status", "type": "Enum", "values": ["active", "inactive"] }
]
 },
 {
 "id": "order",
 "name": "Заказ",
 "fields": [
 { "name": "id", "type": "Number", "constraints": ["required", "unique"] },
 { "name": "customer", "type": "Reference", "target": "customer" },
 { "name": "total", "type": "Number" },
 { "name": "created_at", "type": "Date" }
]
 }
],
 "relations": [
 { "from": "order", "to": "customer", "type": "many-to-one", "field": "customer" }
]
}

Примечание: приведённая схема — лишь пример. Мы ждём от участников собственные улуч
шенные варианты структуры JSON.

Binding Engine

Парсинг выражений

"Привет, {{ user.name }}!" → "Привет, Иван!"
"Сумма: {{ order.total }} руб." → "Сумма: 1500 руб."

Поддерживаемые выражения
• Доступ к полям: {{ user.name }}
• Вложенные поля: {{ order.customer.email }}
• Операции: {{ price * quantity }}

12

Binary Brains Hackathon 2026 Кейсы

• Тернарный оператор: {{ active ? "Да" : "Нет" }}
Реактивность
При изменении данных выражения пересчитываются автоматически.

Test Console

• Поле ввода выражения
• Редактор контекста (JSON)
• Результат в реальном времени

Дополнительные требования (бонусы)

Требование Описание Баллы

Наследование Entity extends другой Entity (наследование полей и
constraints) до 12

Computed Fields Поля с автовычислением до 10
Расширенные constraints min, max, pattern до 7
Валидация данных Проверка по схеме сущностей до 8
TypeScript генерация Экспорт типов из схемы до 7
SQL DDL генерация CREATE TABLE из схемы до 5

Критерии оценки

Критерий Баллы Что оценивается

Работа с сущностями 10 Создание, перемещение, удаление
Работа с полями 12 6 типов, редактирование
Связи 8 1:1, 1:N, N:M
Constraints 5 required, unique
Парсинг выражений 10 {{ }} вычисляются
Доступ к данным 8 Вложенные поля, операции
Обработка ошибок 7 Понятные сообщения
Полнота схемы 5 Сущности, поля, связи
Импорт/экспорт 5 JSON сохраняется
Внешний вид 5 Читаемость
Удобство 3 Интуитивность
Стабильность 2 Нет багов

13

Binary Brains Hackathon 2026 Кейсы

Максимум: 80 базовых + 49 бонусных = 129

14

Binary Brains Hackathon 2026 Кейсы

Кейс 4: Dashboard Builder

Суть задачи

Разработайте конструктор аналитических дашбордов и отчётов.
Решение состоит из трёх модулей:

• Dashboard Designer — редактор для размещения виджетов на сетке
• Query Builder — конструктор запросов с поддержкой JOIN
• Expression Engine — движок вычисляемых полей и метрик

Ключевая сложность: Expression Engine должен парсить и вычислять выражения с
арифметикой, агрегациями и условиями. Query Builder должен поддерживать JOIN между
источниками данных.

Обязательные требования

Dashboard Designer

Рабочая область
• Grid-сетка (12 колонок)
• Drag-and-drop размещение
• Resize виджетов
• Автосдвиг (без перекрытий)

Виджеты

Виджет Описание Настройки

KPI Card Числовой показатель value, title, format
Bar Chart Столбчатая диаграмма xField, yField, color
Line Chart Линейный график xField, yField
Pie Chart Круговая диаграмма valueField, labelField
Data Table Таблица columns, sortable
Text Block Текст content, fontSize

Query Builder

Источники данных
• Поддержка минимум 2 источников (таблиц)
• Визуальное отображение доступных источников
• Выбор источника для каждого виджета

JOIN между источниками

15

Binary Brains Hackathon 2026 Кейсы

Тип Описание

Inner Join Только совпадающие записи
Lek Join Все из левой + совпадения из правой

• Визуальный выбор полей для связи
• Отображение связи между источниками

Операции

Операция Описание

Select Выбор полей
Filter Фильтрация (=, !=, >, <, contains)
Group By Группировка
Aggregation SUM, AVG, COUNT, MIN, MAX
Sort Сортировка ASC/DESC
Limit Ограничение строк

Expression Engine

Поддержка вычисляемых полей (calculated �elds) с выражениями:

{{ sum(amount) }} // агрегация
{{ amount * quantity }} // арифметика
{{ sum(amount) / count(id) }} // комбинация
{{ if(status == "paid", amount, 0) }} // условие

Обязательные возможности
• Арифметические операции: +, -, *, /
• Агрегатные функции внутри выражений
• Условный оператор if(condition, then, else)
• Ссылки на поля из JOIN: orders.amount, customers.name

Применение
• Calculated �eld в Query Builder (новое поле на основе существующих)
• Значение KPI Card: {{ sum(orders.amount) }}
• Условное форматирование (бонус)

Примечание: синтаксис выражений — лишь пример. Мы ждём от участников собственные
варианты (можно использовать другой синтаксис).

Фильтры дашборда

• Date Range — выбор периода
• Select — выпадающий список

Фильтры влияют на все виджеты одновременно.

16

Binary Brains Hackathon 2026 Кейсы

Дополнительные требования (бонусы)

Требование Описание Баллы

Drill-down Клик по элементу графика → детализация (переход к подробным
данным) до 12

Cross-mltering Клик по графику фильтрует другие виджеты до 10
PDF экспорт Выгрузка дашборда в PDF до 7
CSV экспорт Выгрузка таблицы в CSV до 5
Тёмная тема Переключение темы до 5
Доп. виджеты Area Chart, Gauge, Progress Bar до 10

Критерии оценки

Критерий Баллы Что оценивается

Grid и размещение 6 Drag-and-drop, resize
Виджеты 10 6 виджетов работают
Панель свойств 4 Настройки применяются
Экспорт/Импорт 4 JSON
Источники данных 6 2+ источника, выбор для виджета
JOIN 8 Inner/Le� Join, визуальная связь
Select и фильтрация 6 Выбор полей, операторы
Группировка 6 GROUP BY + агрегации
Expression Engine 10 Вычисляемые поля, арифметика, if()
Ссылки на поля 5 Доступ к полям из JOIN
Date Range 4 Фильтр по периоду
Select фильтр 3 Выпадающий список
Внешний вид 5 Читаемость графиков
Удобство 2 Интуитивность
Стабильность 1 Нет багов

Максимум: 80 базовых + 49 бонусных = 129

Mock-данные

Два источника для демонстрации JOIN:

17

Binary Brains Hackathon 2026 Кейсы

// orders.json
[
 { "id": 1, "date": "2024-10-05", "customer_id": 101, "product": "Смартфон", "amount": 45000,
"quantity": 1 },
 { "id": 2, "date": "2024-10-08", "customer_id": 102, "product": "Куртка", "amount": 12000, "quantity":
2 },
 { "id": 3, "date": "2024-11-01", "customer_id": 101, "product": "Наушники", "amount": 8000, "quantity":
1 },
 { "id": 4, "date": "2024-11-15", "customer_id": 103, "product": "Кофе", "amount": 2500, "quantity": 5 }
]

// customers.json
[
 { "id": 101, "name": "Иван Петров", "city": "Москва", "segment": "Premium" },
 { "id": 102, "name": "Мария Сидорова", "city": "Санкт-Петербург", "segment": "Standard" },
 { "id": 103, "name": "Алексей Козлов", "city": "Москва", "segment": "Standard" }
]

Пример JOIN: orders.customer_id → customers.id для получения customers.name и
customers.segment в отчёте.

Примечание: структура mock-данных и JSON-схема дашборда — лишь примеры. Мы ждём от
участников собственные улучшенные варианты.

18

Binary Brains Hackathon 2026 Кейсы

Общие требования

Технологии

• Бэкенд (если есть): только Java или Kotlin
• Фронтенд: любой современный фреймворк (рекомендуем React, Vue.js)
• Хранение данных: JSON-файлы (без базы данных)

Для Кейсов 1, 3, 4 допустимо решение полностью на фронтенде (без бэкенда). Если бэкенд
присутствует — только Java/Kotlin.

Важно: Решение должно запускаться локально по инструкции из README. Проверьте инструк
цию заранее!

Формат сдачи

1. Полный архив с решением (zip, tar)
2. README.md с разделами:

• Название и описание
• Инструкция по запуску
• Список реализованных функций
• Описание JSON-схемы
• Скриншоты (желательно)

Оценка

1. Жюри запускает приложение по README
2. Тестирует функциональность по критериям
3. Выставляет баллы

19

Binary Brains Hackathon 2026 Кейсы

FAQ

Можно ли участвовать в нескольких кейсах?
Да, но лучше один кейс качественно, чем несколько поверхностно.
Обязательно ли Java/Kotlin на бэкенде?
Если бэкенд есть — да, только Java/Kotlin. Кейсы 1, 3, 4 можно реализовать полностью на
фронтенде.
Можно ли использовать готовые UI-библиотеки?
Да, разрешено и приветствуется.
Что если не успею всё?
Сдавайте то, что есть. Частичное решение лучше, чем ничего.
Нужно ли деплоить?
Не обязательно, но ссылка на демо — плюс.
Как вводить conditions в Кейсе 2?
Простые выражения: amount > 1000, status == "active".
Какие лицензии можно использовать?
Любые пермиссивные, кроме GPL и AGPL.

Успехов! Ждём ваши решения.

20

	Обзор кейсов
	Подход к данным

	Кейс 1: Low-code UI Designer
	Суть задачи
	Обязательные требования
	Designer (Конструктор)
	Рабочая область (Canvas)
	Палитра компонентов
	Drag & Drop
	Вложенность
	Панель свойств
	Сохранение и загрузка

	Interpreter (Движок отображения)
	Рендеринг
	Интерактивность
	Обработка событий
	Режим предпросмотра

	JSON-схема

	Дополнительные требования (бонусы)
	Критерии оценки
	Что НЕ требуется
	Пример сценария

	Кейс 2: Workflow Designer
	Суть задачи
	Термины
	Обязательные требования
	Workflow Designer
	Рабочая область
	Узлы (States)
	Связи (Transitions)
	Панель настройки переходов
	Экспорт/Импорт

	State Machine Core
	Входные данные
	Валидация перехода
	Выполнение перехода
	Логирование
	Демонстрационный интерфейс

	JSON-схема

	Дополнительные требования (бонусы)
	Критерии оценки

	Кейс 3: Data Model Designer
	Суть задачи
	Термины
	Обязательные требования
	Entity Designer
	Рабочая область
	Типы полей
	Ограничения
	Связи (Relations)
	Экспорт/Импорт

	JSON-схема сущностей
	Binding Engine
	Парсинг выражений
	Поддерживаемые выражения
	Реактивность

	Test Console

	Дополнительные требования (бонусы)
	Критерии оценки

	Кейс 4: Dashboard Builder
	Суть задачи
	Обязательные требования
	Dashboard Designer
	Рабочая область
	Виджеты

	Query Builder
	Источники данных
	JOIN между источниками
	Операции

	Expression Engine
	Обязательные возможности
	Применение

	Фильтры дашборда

	Дополнительные требования (бонусы)
	Критерии оценки
	Mock-данные

	Общие требования
	Технологии
	Формат сдачи
	Оценка

	FAQ

